Sensitive immunoassays of nitrated fibrinogen in human biofluids

人类体液中硝化纤维蛋白原的灵敏免疫测定

阅读:8
作者:Zhiwen Tang, Hong Wu, Dan Du, Jun Wang, Hua Wang, Wei-jun Qian, Diana J Bigelow, Joel G Pounds, Richard D Smith, Yuehe Lin

Abstract

Three new sandwich immunoassays for detection of nitrated biomarker have been established with potential applications in biomedical studies and clinical practice. In this study, nitrated human fibrinogen, a potential oxidative stress biomarker for several pathologies, was chosen as the target. To improve the sensitivity and overcome the interference caused by the complexity of human biofluids, we developed three sandwich strategies using various combinations of primary antibody and secondary antibody. All three strategies demonstrated high sensitivity and selectivity towards nitrated forms of fibrinogen in buffer, but their performances were dramatically reduced when tested with human plasma and serum samples. Systematically optimizations were carried out to investigate the effects of numerous factors, including sampling, coating, blocking, and immunoreactions. Our final optimization results indicate that two of these strategies retain sufficient sensitivity and selectivity for use as assays in human physiological samples. Specifically, detection limits reached the pM level and the linear response ranges were up to nM level with a correlation coefficient>0.99. To our best knowledge, this is the first example of using an electrochemical immunoassay for a nitrated biomarker in a physiological fluid. This novel approach provides a rapid, sensitive, selective, cost efficient and robust bioassay for detection of oxidative stress in pathology and for clinical applications. Moreover, the sandwich strategies developed in this paper can be readily used to establish effective methods targeting other nitration biomarkers.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。