REV7 is essential for DNA damage tolerance via two REV3L binding sites in mammalian DNA polymerase ζ

REV7 通过哺乳动物 DNA 聚合酶 ζ 中的两个 REV3L 结合位点对 DNA 损伤耐受至关重要

阅读:7
作者:Junya Tomida, Kei-ichi Takata, Sabine S Lange, Andria C Schibler, Matthew J Yousefzadeh, Sarita Bhetawal, Sharon Y R Dent, Richard D Wood

Abstract

DNA polymerase zeta (pol ζ) is exceptionally important for controlling mutagenesis and genetic instability. REV3L comprises the catalytic subunit, while REV7 (MAD2L2) is considered an accessory subunit. However, it has not been established that the role of REV7 in DNA damage tolerance is necessarily connected with mammalian pol ζ, and there is accumulating evidence that REV7 and REV3L have independent functions. Analysis of pol ζ has been hampered by difficulties in expression of REV3L in mammalian cells, and lack of a functional complementation system. Here, we report that REV7 interacts with full-length REV3L in vivo and we identify a new conserved REV7 interaction site in human REV3L (residues 1993-2003), distinct from the known binding site (residues 1877-1887). Mutation of both REV7-binding sites eliminates the REV3L-REV7 interaction. In vivo complementation shows that both REV7-binding sites in REV3L are necessary for preventing spontaneous chromosome breaks and conferring resistance to UV radiation and cisplatin. This demonstrates a damage-specific function of REV7 in pol ζ, in contrast to the distinct roles of REV3L and REV7 in primary cell viability and embryogenesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。