A novel role for Wnt/Ca2+ signaling in actin cytoskeleton remodeling and cell motility in prostate cancer

Wnt/Ca2+ 信号在前列腺癌肌动蛋白细胞骨架重塑和细胞运动中的新作用

阅读:10
作者:Qin Wang, Andrew J Symes, Corrina A Kane, Alex Freeman, Joseph Nariculam, Philippa Munson, Christopher Thrasivoulou, John R W Masters, Aamir Ahmed

Abstract

Wnt signaling is a critical regulatory pathway in development and disease. Very little is known about the mechanisms of Wnt signaling in prostate cancer, a leading cause of death in men. A quantitative analysis of the expression of Wnt5A protein in human tissue arrays, containing 600 prostate tissue cores, showed >50% increase in malignant compared to benign cores (p<0.0001). In a matched pair of prostate cancer and normal cell line, expression of Wnt5A protein was also increased. Calcium waves were induced in prostate cells in response to Wnt5A with a 3 fold increase in Flou-4 intensity. The activity of Ca(2+)/calmodulin dependent protein kinase (CaMKII), a transducer of the non-canonical Wnt/Ca(2+) signaling, increased by 8 fold in cancer cells; no change was observed in beta-catenin expression, known to activate the canonical Wnt/beta-catenin pathway. Mining of publicly available human prostate cancer oligoarray datasets revealed that the expression of numerous genes (e.g., CCND1, CD44) under the control of beta-catenin transcription is down-regulated. Confocal and quantitative electron microscopy showed that specific inhibition of CaMKII in cancer cells causes remodeling of the actin cytoskeleton, irregular wound edges and loose intercellular architecture and a 6 and 8 fold increase in the frequency and length of filopodia, respectively. Conversely, untreated normal prostate cells showed an irregular wound edge and loose intercellular architecture; incubation of normal prostate cells with recombinant Wnt5A protein induced actin remodeling with a regular wound edge and increased wound healing capacity. Live cell imaging showed that a functional consequence of CaMKII inhibition was 80% decrease in wound healing capacity and reduced cell motility in cancer cells. We propose that non-canonical Wnt/Ca(2+) signaling via CaMKII acts as a novel regulator of structural plasticity and cell motility in prostate cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。