Proneurogenic Effects of Trazodone in Murine and Human Neural Progenitor Cells

曲唑酮对小鼠和人类神经祖细胞的促神经发生作用

阅读:7
作者:Valeria Bortolotto, Francesca Mancini, Giorgina Mangano, Rita Salem, Er Xia, Erika Del Grosso, Michele Bianchi, Pier Luigi Canonico, Lorenzo Polenzani, Mariagrazia Grilli

Abstract

Several antidepressants increase adult hippocampal neurogenesis (ahNG) in rodents, primates, and, potentially, humans. This effect may at least partially account for their therapeutic activity. The availability of antidepressants whose mechanism of action involves different neurotransmitter receptors represents an opportunity for increasing our knowledge on their distinctive peculiarities and for dissecting the contribution of receptor subtypes in ahNG modulation. The aim of this study was to evaluate, in vitro, the effects of the antidepressant trazodone (TZD) on ahNG by using primary cultures of murine adult hippocampal neural progenitor cells (ahNPCs) and human induced pluripotent stem cell (iPSC)-derived NPCs. We demonstrated that TZD enhances neuronal differentiation of murine as well as human NPCs. TZD is a multimodal antidepressant, which binds with high affinity to 5-HT2a, α1, and 5-HT1a and with lower affinity to 5-HT2c, α2 and 5-HTT. We demonstrated that TZD proneurogenic effects were mediated by 5-HT2a antagonism both in murine and in human NPCs and by 5-HT2c antagonism in murine cells. Moreover NF-κB p50 nuclear translocation appeared to be required for TZD-mediated proneurogenic effects. Interestingly, TZD had no proneurogenic effects in 5-HT depleted ahNPCs. The TDZ bell-shaped dose-response curve suggested additional effects. However, in our model 5-HT1a and α1/α2 receptors had no role in neurogenesis. Overall, our data also demonstrated that serotoninergic neurotransmission may exert both positive and negative effects on neuronal differentiation of ahNPCs in vitro.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。