SNARE-dependent glutamate release in megakaryocytes

巨核细胞中 SNARE 依赖的谷氨酸释放

阅读:10
作者:Catherine J Thompson, Tatjana Schilling, Martin R Howard, Paul G Genever

Conclusion

These data show that glutamate release from megakaryocytes occurs in a SNARE-dependent, exocytotic manner and is increased during differentiation, suggesting that manipulation of glutamate signaling could influence megakaryocytopoiesis and, therefore, offer a suitable target for the treatment of thrombosis and other hematological disorders.

Methods

Using the megakaryocytic cell line MEG-01, primary megakaryocytes, and tissue sections of bone marrow, reverse transcription polymerase chain reaction, Western blot analysis, and immunolocalization were employed to detect factors required for vesicular glutamate release. Vesicle recycling was monitored by acridine orange and FM1-43 staining and glutamate release activity was assessed by an enzyme-linked fluorimetric assay. Genetically modified MEG-01 cells, with deletion or overexpression of SNARE and vesicular proteins, were also examined for glutamate release activity.

Objective

The identification of signaling pathways involved in megakaryocytopoiesis is essential for development of novel therapeutics to treat hematological disorders. Following our previous findings that megakaryocytes express functional channel-forming N-methyl-D-aspartate-type glutamate receptors, here we aimed to determine the glutamate release capacity in undifferentiated and differentiated megakaryocytes and the role of soluble N-ethyl maleimide-sensitive factor attachment protein receptor (SNARE) proteins that are known to be associated with vesicular exocytosis. Materials and

Results

We demonstrated that megakaryocytes express numerous proteins required for vesicular glutamate release, including core SNARE proteins, vesicle-associated membrane protein, soluble N-ethyl maleimide-sensitive factor attachment protein-23, and syntaxin, as well as specific glutamate-loading vesicle proteins, VGLUT1 and VGLUT2. Moreover, active vesicle recycling and differentiation-dependent glutamate release were observed in megakaryocytes. Vesicle-associated membrane protein-deficient MEG-01 cells, which are impaired in vesicle recycling, showed a 30% decrease in released glutamate, whereas overexpression of VGLUT1 exhibited up to a 2.2-fold increase in glutamate release.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。