Skeletal muscle Nur77 and NOR1 insulin responsiveness is blunted in obesity and type 2 diabetes but improved after exercise training

骨骼肌 Nur77 和 NOR1 胰岛素反应在肥胖和 2 型糖尿病中减弱,但在运动训练后得到改善

阅读:5
作者:Jacob T Mey, Thomas P J Solomon, John P Kirwan, Jacob M Haus

Abstract

Obesity and type 2 diabetes (T2DM) are characterized by a blunted metabolic response to insulin, and strongly manifests in skeletal muscle insulin resistance. The orphan nuclear receptors, Nur77 and NOR1, regulate insulin-stimulated nutrient metabolism where Nur77 and NOR1 gene expression is increased with acute aerobic exercise and acute insulin stimulation. Whether Nur77 or NOR1 are associated with the insulin-sensitizing effects of chronic aerobic exercise training has yet to be elucidated. Fourteen lean healthy controls (LHC), 12 obese (OB), and 10 T2DM individuals (T2DM) underwent hyperinsulinemic-euglycemic clamps with skeletal muscle biopsies. Muscle was analyzed for Nur77 and NOR1 gene and protein expression at basal and insulin-stimulated conditions. Furthermore, a subcohort of 18 participants (OB, n = 12; T2DM, n = 6) underwent a 12-week aerobic exercise intervention (85% HRmax , 60 min/day, 5 days/week). In response to insulin infusion, LHC increased protein expression of Nur77 (8.7 ± 3.2-fold) and NOR1 (3.6 ± 1.1-fold), whereas OB and T2DM remained unaffected. Clamp-derived glucose disposal rates correlated with Nur77 (r2 = 0.14) and NOR1 (r2 = 0.12) protein expression responses to insulin, whereas age (Nur77: r2 = 0.22; NOR1: r2 = 0.25) and BMI (Nur77: r2 = 0.22; NOR1: r2 = 0.42) showed inverse correlations, corroborating preclinical data. In the intervention cohort, exercise improved Nur77 protein expression in response to insulin (PRE: -1.2 ± 0.3%, POST: 6.2 ± 1.5%). Also, insulin treatment of primary human skeletal muscle cells increased Nur77 and NOR1 protein. These findings highlight the multifactorial nature of insulin resistance in human obesity and T2DM. Understanding the regulation of Nur77 and NOR1 in skeletal muscle and other insulin-sensitive tissues will create opportunities to advance therapies for T2DM.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。