Comparative chloroplast genomics reveals the phylogeny and the adaptive evolution of Begonia in China

比较叶绿体基因组学揭示中国秋海棠的系统发育和适应性进化

阅读:3
作者:Chao Xiong #, Yang Huang #, Zhenglong Li, Lan Wu, Zhiguo Liu, Wenjun Zhu, Jianhui Li, Ran Xu, Xin Hong

Background

The Begonia species are common shade plants that are mostly found in southwest China. They have not been well studied despite their medicinal and decorative uses because gene penetration, decreased adaptability, and restricted availability are all caused by frequent interspecific hybridization. Result: To understand the patterns of mutation in the chloroplast genomes of different species of Begonia, as well as their evolutionary relationships, we collected seven Begonia species in China and sequenced their chloroplast genomes. Begonia species exhibit a quadripartite structure of chloroplast genomes (157,634 - 169,694 bp), consisting of two pairs of inverted repeats (IR: 26,529 - 37,674 bp), a large single copy (LSC: 75,477 - 86,500 bp), and a small single copy (SSC: 17,861 - 18,367 bp). 128-143 genes (comprising 82-93 protein-coding genes, 8 ribosomal RNAs, and 36-43 transfer RNAs) are found in the chloroplast genomes. Based on comparative analyses, this taxon has a relatively similar genome structure. A total of six substantially divergent DNA regions (trnT-UGU-trnL-UAA, atpF-atpH, ycf4-cemA, psbC-trnS-UGA, rpl32-trnL-UAG, and ccsA-ndhD) are found in the seventeen chloroplast genomes. These regions are suitable for species identification and phylogeographic analysis. Phylogenetic analysis shows that Begonia species that were suited to comparable environments grouped in a small clade and that all Begonia species formed one big clade in the phylogenetic tree, supporting the genus' monophyly. In addition, positive selection sites were discovered in eight genes (rpoC1, rpoB, psbE, psbK, petA, rps12, rpl2, and rpl22), the majority of which are involved in protein production and photosynthesis.

Conclusion

Using these genome resources, we can resolve deep-level phylogenetic relationships between Begonia species and their families, leading to a better understanding of evolutionary processes. In addition to enhancing species identification and phylogenetic resolution, these results demonstrate the utility of complete chloroplast genomes in phylogenetically and taxonomically challenging plant groupings.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。