Blocking REDD1/TXNIP Complex Ameliorates HG-Induced Renal Tubular Epithelial Cell Apoptosis and EMT through Repressing Oxidative Stress

阻断 REDD1/TXNIP 复合物通过抑制氧化应激改善 HG 诱导的肾小管上皮细胞凋亡和 EMT

阅读:3
作者:Lin Mu, Nan Chen, Yakun Chen, Zhifen Yang, Huandi Zhou, Shan Song, Yonghong Shi

Abstract

Diabetic nephropathy (DN) has become the most common secondary kidney disease causing end-stage renal disease (ESRD). Nevertheless, the underlying mechanisms responsible for DN remain largely unknown. Regulated in development and DNA damage response 1 (REDD1) is a prooxidative molecule known to contribute to diabetes mellitus and its complications. However, it has not been previously examined whether and how REDD1 can further drive renal tubular epithelial cell (RTEC) apoptosis and epithelial-to-mesenchymal transition in DN. The expression of REDD1 was elevated in the kidneys of DN patients and diabetic mice in this study. By generating the DN model in REDD1 knockout mice, we demonstrated that REDD1 deficiency significantly improved apoptosis and EMT in diabetic mice. In vitro experiments showed that REDD1 generation was induced by high glucose (HG) in HK-2 cells. Similarly, the transfection of REDD1 siRNA plasmid also suppressed HG-induced apoptosis and EMT. Furthermore, we discovered that the inhibition of REDD1 suppressed the expression of Nox4-induced HG and reactive oxygen species (ROS) synthesis in HK-2 cells. In addition, HG could induce endogenous REDD1 and TXNIP to form a powerful complex. In summary, our findings demonstrate that blocking the REDD1/TXNIP complex can prevent HG-induced apoptosis and EMT by inhibiting ROS production, highlighting REDD1 as a valuable therapeutic priority site for DN.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。