Pulmonary phagocyte-derived NPY controls the pathology of severe influenza virus infection

肺吞噬细胞衍生的 NPY 控制严重流感病毒感染的病理

阅读:6
作者:Seiki Fujiwara, Midori Hoshizaki, Yu Ichida, Dennis Lex, Etsushi Kuroda, Ken J Ishii, Shigeyuki Magi, Mariko Okada, Hiroyuki Takao, Masahiro Gandou, Hirotaka Imai, Ryujiro Hara, Herbert Herzog, Akihiko Yoshimura, Hitoshi Okamura, Josef M Penninger, Arthur S Slutsky, Stefan Uhlig, Keiji Kuba, Yumiko

Abstract

Crosstalk between the autonomic nervous system and the immune system by means of the sympathetic and parasympathetic pathways is a critical process in host defence. Activation of the sympathetic nervous system results in the release of catecholamines as well as neuropeptide Y (NPY). Here, we investigated whether phagocytes are capable of the de novo production of NPY, as has been described for catecholamines. We show that the synthesis of NPY and its Y1 receptor (Y1R) is increased in phagocytes in lungs following severe influenza virus infection. The genetic deletion of Npy or Y1r specifically in phagocytes greatly improves the pathology of severe influenza virus infection, which is characterized by excessive virus replication and pulmonary inflammation. Mechanistically, it is the induction of suppressor of cytokine signalling 3 (SOCS3) via NPY-Y1R activation that is responsible for impaired antiviral response and promoting pro-inflammatory cytokine production, thereby enhancing the pathology of influenza virus infection. Thus, direct regulation of the NPY-Y1R-SOCS3 pathway on phagocytes may act as a fine-tuner of an innate immune response to virus infection, which could be a therapeutic target for lethal influenza virus infection.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。