Enhanced Functional Genomic Screening Identifies Novel Mediators of Dual Leucine Zipper Kinase-Dependent Injury Signaling in Neurons

增强功能基因组筛选鉴定出神经元中双亮氨酸拉链激酶依赖性损伤信号传导的新介质

阅读:5
作者:Derek S Welsbie, Katherine L Mitchell, Vinod Jaskula-Ranga, Valentin M Sluch, Zhiyong Yang, Jessica Kim, Eugen Buehler, Amit Patel, Scott E Martin, Ping-Wu Zhang, Yan Ge, Yukan Duan, John Fuller, Byung-Jin Kim, Eman Hamed, Xitiz Chamling, Lei Lei, Iain D C Fraser, Ze'ev A Ronai, Cynthia A Berlinicke

Abstract

Dual leucine zipper kinase (DLK) has been implicated in cell death signaling secondary to axonal damage in retinal ganglion cells (RGCs) and other neurons. To better understand the pathway through which DLK acts, we developed enhanced functional genomic screens in primary RGCs, including use of arrayed, whole-genome, small interfering RNA libraries. Explaining why DLK inhibition is only partially protective, we identify leucine zipper kinase (LZK) as cooperating with DLK to activate downstream signaling and cell death in RGCs, including in a mouse model of optic nerve injury, and show that the same pathway is active in human stem cell-derived RGCs. Moreover, we identify four transcription factors, JUN, activating transcription factor 2 (ATF2), myocyte-specific enhancer factor 2A (MEF2A), and SRY-Box 11 (SOX11), as being the major downstream mediators through which DLK/LZK activation leads to RGC cell death. Increased understanding of the DLK pathway has implications for understanding and treating neurodegenerative diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。