A Novel Mechanism, Linked to Cell Density, Largely Controls Cell Division in Synechocystis

一种与细胞密度相关的新机制在很大程度上控制着集胞藻的细胞分裂

阅读:4
作者:Alberto A Esteves-Ferreira, Masami Inaba, Toshihiro Obata, Antoine Fort, Gerard T A Fleming, Wagner L Araújo, Alisdair R Fernie, Ronan Sulpice

Abstract

Many studies have investigated the various genetic and environmental factors regulating cyanobacterial growth. Here, we investigated the growth and metabolism of Synechocystis sp. PCC 6803 under different nitrogen sources, light intensities, and CO2 concentrations. Cells grown on urea showed the highest growth rates. However, for all conditions tested, the daily growth rates in batch cultures decreased steadily over time, and stationary phase was obtained with similar cell densities. Unexpectedly, metabolic and physiological analyses showed that growth rates during log phase were not controlled primarily by the availability of photoassimilates. Further physiological investigations indicated that nutrient limitation, quorum sensing, light quality, and light intensity (self-shading) were not the main factors responsible for the decrease in the growth rate and the onset of the stationary phase. Moreover, cell division rates in fed-batch cultures were positively correlated with the dilution rates. Hence, not only light, CO2, and nutrients can affect growth but also a cell-cell interaction. Accordingly, we propose that cell-cell interaction may be a factor responsible for the gradual decrease of growth rates in batch cultures during log phase, culminating with the onset of stationary phase.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。