Mechanism of cation binding to the glutamate transporter EAAC1 probed with mutation of the conserved amino acid residue Thr101

通过保守氨基酸残基 Thr101 的突变探讨阳离子与谷氨酸转运蛋白 EAAC1 的结合机制

阅读:5
作者:Zhen Tao, Noa Rosental, Baruch I Kanner, Armanda Gameiro, Juddy Mwaura, Christof Grewer

Abstract

The glutamate transporter excitatory amino acid carrier 1 (EAAC1) catalyzes the co-transport of three Na(+) ions, one H(+) ion, and one glutamate molecule into the cell, in exchange for one K(+) ion. Na(+) binding to the glutamate-free form of the transporter generates a high affinity binding site for glutamate and is thus required for transport. Moreover, sodium binding to the transporters induces a basal anion conductance, which is further activated by glutamate. Here, we used the [Na(+)] dependence of this conductance as a read-out of Na(+) binding to the substrate-free transporter to study the impact of a highly conserved amino acid residue, Thr(101), in transmembrane domain 3. The apparent affinity of substrate-free EAAC1 for Na(+) was dramatically decreased by the T101A but not by the T101S mutation. Interestingly, in further contrast to EAAC1(WT), in the T101A mutant this [Na(+)] dependence was biphasic. This behavior can be explained by assuming that the binding of two Na(+) ions prior to glutamate binding is required to generate a high affinity substrate binding site. In contrast to the dramatic effect of the T101A mutation on Na(+) binding, other properties of the transporter, such as its ability to transport glutamate, were impaired but not eliminated. Our results are consistent with the existence of a cation binding site deeply buried in the membrane and involving interactions with the side chain oxygens of Thr(101) and Asp(367). A theoretical valence screening approach confirms that the predicted site of cation interaction has the potential to be a novel, so far undetected sodium binding site.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。