Heat stress causes dysfunctional autophagy in oxidative skeletal muscle

热应激导致氧化骨骼肌自噬功能障碍

阅读:5
作者:Alexandra J Brownstein, Shanthi Ganesan, Corey M Summers, Sarah Pearce, Benjamin J Hale, Jason W Ross, Nicholas Gabler, Jacob T Seibert, Robert P Rhoads, Lance H Baumgard, Joshua T Selsby

Abstract

We have previously established that 24 h of environmental hyperthermia causes oxidative stress and have implicated mitochondria as likely contributors to this process. Given this, we hypothesized that heat stress would lead to increased autophagy/mitophagy and a reduction in mitochondrial content. To address this hypothesis pigs were housed in thermoneutral (TN; 20°C) or heat stress (35°C) conditions for 1- (HS1) or 3- (HS3) days and the red and white portions of the semitendinosus collected. We did not detect differences in glycolytic muscle. Counter to our hypothesis, upstream activation of autophagy was largely similar between groups as were markers of autophagosome nucleation and elongation. LC3A/B-I increased 1.6-fold in HS1 and HS3 compared to TN (P < 0.05), LC3A/B-II was increased 4.1-fold in HS1 and 4.8-fold in HS3 relative to TN, (P < 0.05) and the LC3A/B-II/I ratio was increased 3-fold in HS1 and HS3 compared to TN suggesting an accumulation of autophagosomes. p62 was dramatically increased in HS1 and HS3 compared to TN Heat stress decreased mitophagy markers PINK1 7.0-fold in HS1 (P < 0.05) and numerically by 2.4-fold in HS3 compared to TN and BNIP3L/NIX by 2.5-fold (P < 0.05) in HS1 and HS3. Markers of mitochondrial content were largely increased without activation of PGC-1α signaling. In total, these data suggest heat-stress-mediated suppression of activation of autophagy and autophagosomal degradation, which may enable the persistence of damaged mitochondria in muscle cells and promote a dysfunctional intracellular environment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。