The Ketone Metabolite β-Hydroxybutyrate Attenuates Oxidative Stress in Spinal Cord Injury by Suppression of Class I Histone Deacetylases

酮代谢物 β-羟基丁酸通过抑制 I 类组蛋白去乙酰化酶减轻脊髓损伤中的氧化应激

阅读:4
作者:Ganggang Kong, Zucheng Huang, Wei Ji, Xiaomeng Wang, Junhao Liu, Xiuhua Wu, Zhiping Huang, Rong Li, Qingan Zhu

Abstract

The ketone metabolite β-hydroxybutyrate (βOHB), is reported to be neuroprotective after spinal cord injury (SCI) in rats, but the underlying mechanism remains unknown. The present study aims to investigate effects of βOHB on suppression of oxidative stress and inhibition of class I histone deacetylases (HDACs) in in vivo and in vitro models. Rats were fed with ketogenic diet (KD) or standard diet (SD) for 3 weeks. A C5 hemi-contusion injury was applied to these animals on the 14th day of experiment, and spinal cord samples were harvested on the 1st, 3rd and 7th days after SCI, respectively. The blood ketone levels were significantly higher in the KD groups. KD reduced oxidative stress markers and reactive oxygen species (ROS) products, downregulated the expression of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX)2 and NOX4, and upregulated the expression of forkhead box group O (FOXO)3a, mitochondrial superoxide dismutase (MnSOD), and catalase after SCI. The in vitro study, performed on PC12 cells, indicated that βOHB inhibited H2O2-induced ROS production, decreased NOX2 and NOX4 protein levels, and upregulated FOXO3a, MnSOD, and catalase levels in a dose-dependent manner, which was consistent with the in vivo results. The ketone metabolite βOHB inhibited HDAC1, HDAC2, and HDAC3 activity, but not HDAC8 in SCI rats and PC12 cells. Depletion of HDAC1 or HDAC2 with small interfering RNA (siRNA) attenuated H2O2-induced ROS production and protein carbonylation and elevated FOXO3a protein levels, meanwhile reducing NOX2 and NOX4 protein expression in PC12 cells. Our results indicate that the ketone metabolite βOHB attenuates oxidative stress in SCI by inhibition of class I HDACs, and selected suppression of HDAC1 or HDAC2 regulates FOXO3a, NOX2, and NOX4 expression. Therefore, the ketone metabolite βOHB may be a novel promising therapeutic agent for SCI.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。