Dorsal raphe stimulation relays a reward signal to the ventral tegmental area via GluN2C NMDA receptors

背缝刺激通过 GluN2C NMDA 受体将奖励信号传递到腹侧被盖区

阅读:7
作者:Giovanni Hernandez, Willemieke M Kouwenhoven, Emmanuelle Poirier, Karim Lebied, Daniel Lévesque, Pierre-Paul Rompré

Background

Glutamate relays a reward signal from the dorsal raphe (DR) to the ventral tegmental area (VTA). However, the role of the different subtypes of N-methyl-D-aspartate (NMDA) receptors is complex and not clearly understood. Therefore, we measured NMDA receptors subunits expression in limbic brain areas. In addition, we studied the effects of VTA down-regulation of GluN2C NMDA receptor on the reward signal that arises from DR electrical stimulation.

Conclusion

The present results suggest that VTA glutamate neurotransmission relays a reward signal initiated by DR stimulation by acting on GluN2C NMDA receptors.

Methods

Using qPCR, we identified the relative composition of the different Grin2a-d subunits of the NMDA receptors in several brain areas. Then, we used fluorescent in situ hybridization (FISH) to evaluate the colocalization of Grin2c and tyrosine hydroxylase (TH) mRNA in VTA neurons. To assess the role of GluN2C in brain stimulation reward, we downregulated this receptor using small interfering RNA (siRNA) in rats self-stimulating for electrical pulses delivered to the DR. To delineate further the specific role of GluN2C in relaying the reward signal, we pharmacologically altered the function of VTA NMDA receptors by bilaterally microinjecting the NMDA receptor antagonist PPPA.

Results

We identified GluN2C as the most abundant subunit of the NMDA receptor expressed in the VTA. FISH revealed that about 50% of TH-positive neurons colocalize with Grin2c transcript. siRNA manipulation produced a selective down-regulation of the GluN2C protein subunit and a significant reduction in brain stimulation reward. Interestingly, PPPA enhanced brain stimulation reward, but only in rats that received the nonactive RNA sequence.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。