Anagrelide platelet-lowering effect is due to inhibition of both megakaryocyte maturation and proplatelet formation: insight into potential mechanisms

阿那格雷降低血小板的作用是由于抑制巨核细胞成熟和原血小板形成:深入了解潜在机制

阅读:5
作者:Y R Espasandin, A C Glembotsky, M Grodzielski, P R Lev, N P Goette, F C Molinas, R F Marta, P G Heller

Conclusions

The platelet-lowering effect of anagrelide results from impaired megakaryocyte maturation and reduced PPF, both of which are deregulated in essential thrombocythemia. These effects seem unrelated to PDE3 inhibition, which is responsible for anagrelide's cardiovascular side-effects and antiplatelet activity. Further work in this field may lead to the potential development of drugs to treat thrombocytosis in myeloproliferative disorders with an improved pharmacologic profile.

Results

Exposure of cord blood-derived megakaryocytes to anagrelide during late stages of culture led to a dose- and time-dependent inhibition of PPF and reduced proplatelet complexity, which were independent of the anagrelide-induced effect on megakaryocyte maturation. Whereas anagrelide was shown to phosphorylate cAMP-substrate VASP, two pharmacologic inhibitors of the cAMP pathway were completely unable to revert anagrelide-induced repression in megakaryopoiesis and PPF, suggesting these effects are unrelated to its ability to inhibit phosphodiesterase (PDE) 3. The reduction in thrombopoiesis was not the result of down-regulation of transcription factors which coordinate PPF, while the myosin pathway was identified as a candidate target, as anagrelide was shown to phosphorylate the myosin light chain and the PPF phenotype was partially rescued after inhibition of myosin activity with blebbistatin. Conclusions: The platelet-lowering effect of anagrelide results from impaired megakaryocyte maturation and reduced PPF, both of which are deregulated in essential thrombocythemia. These effects seem unrelated to PDE3 inhibition, which is responsible for anagrelide's cardiovascular side-effects and antiplatelet activity. Further work in this field may lead to the potential development of drugs to treat thrombocytosis in myeloproliferative disorders with an improved pharmacologic profile.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。