Bone morphogenetic protein-2 may represent the molecular link between oxidative stress and vascular stiffness in chronic kidney disease

骨形态发生蛋白-2 可能代表慢性肾病中氧化应激和血管僵硬之间的分子联系

阅读:7
作者:G Dalfino, S Simone, S Porreca, C Cosola, C Balestra, C Manno, F P Schena, G Grandaliano, G Pertosa

Abstract

Oxidative stress and vascular calcifications are emergent risk factors for the accelerated atherosclerosis process featuring chronic kidney disease (CKD). Vascular calcification is an active process similar to bone modelling, where BMP-2 may play a pathogenic role. Aim of our study was to investigate the link between oxidative stress, BMP-2 protein expression and vascular disease in CKD. We enrolled 85 CKD patients (K-DOQI stage II or higher) and 41 healthy individuals. 8-Oxo-7,8-dihydro-2'-deoxyguanosine (8-OHdG) was used as a marker of oxidative stress. Brachial-ankle pulse wave velocity (baPWV) was used as a measure of arterial stiffness. BMP-2 serum levels were significantly higher in CKD patients than in controls (p<0.0001). Serum 8-OHdG levels were significantly higher in CKD patients compared to controls (p<0.05). BMP-2 serum levels were inversely associated with eGFR (r=-0.3; p=0.01) and directly correlated with 8-OHdG serum concentrations (r=-0.3; p=0.03). Arterial stiffness was inversely correlated with eGFR (r=-0.4; p=0.001) and directly correlated with BMP-2 (r=0.3; p=0.03), 8-OHdG (r=0.4, p=0.02) and phosphorus serum levels (r=0.3; p=0.007). In a multiple regression model, phosphorus and BMP-2 were independently correlated with baPWV. In vitro exposure to H(2)O(2) induced a time and dose-dependent increase in BMP-2 expression in an immortalized endothelial cell line. Moreover, H(2)O(2) pre-incubation of cultured vascular smooth muscle cell enhanced the BMP-2-induced up-regulation of ALPL, an osteoblastic phenotype marker. Our data suggest that in CKD BMP-2 may represent the molecular link between oxidative stress and arterial stiffness due to vascular calcification.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。