Tumor-associated macrophages modulate resistance to oxaliplatin via inducing autophagy in hepatocellular carcinoma

肿瘤相关巨噬细胞通过诱导肝细胞癌自噬来调节对奥沙利铂的耐药性

阅读:9
作者:Xiu-Tao Fu #, Kang Song #, Jian Zhou #, Ying-Hong Shi, Wei-Ren Liu, Guo-Ming Shi, Qiang Gao, Xiao-Ying Wang, Zhen-Bin Ding, Jia Fan

Background

Oxaliplatin-based chemotherapy is widely used to treat hepatocellular carcinoma (HCC). Recent studies suggested that therapeutic resistance of tumors was affected by tumor microenvironment (TME). As a major component of TME, the role of tumor-associated macrophages (TAMs) on drug resistance in HCC is largely unknown.

Conclusions

Our results suggest that TAMs induce autophagy in HCC cells which might contribute to oxaliplatin resistance. Targeting TAMs is a promising therapeutic strategy to enhance the effects of chemotherapy oxaliplatin in HCC patients.

Methods

26 HCC samples were obtained from patients who had underwent transarterial chemoembolization (TACE) within 3 months before receiving curative resections. Immunohistochemistry was applied to detect the density of TAMs in these tissues. SMMC-7721 and Huh-7 cell lines were used to co-culture with THP-1 derived macrophages. Under oxaliplatin treatment, cell death was measured using MTT and annexin V/propidium iodide assays. Autophagy activation was evaluated by GFP-LC3 redistribution and LC3 conversion in SMMC-7721 and Huh-7. Short-interfering RNA against ATG5 gene was applied to inhibit autophagy. In vivo validation was conducted in Huh-7 with or without macrophages using an HCC xenograft model in nude mice after oxaliplatin administration.

Results

We found that the density of TAMs in HCC samples was associated with the efficacy of TACE. Macrophages inhibited cell death induced by oxaliplatin in HCC cells. Autophagy was functionally activated in HCC cells after co-culturing with macrophages. Suppression of autophagy using RNA interference of ATG5 in HCC cells promoted the oxaliplatin cytotoxicity in the co-culture system. Critically, co-implantation with macrophages in HCC xenografts weakens cytotoxic effect of oxaliplatin through inducing autophagy to avoid apoptosis. Conclusions: Our results suggest that TAMs induce autophagy in HCC cells which might contribute to oxaliplatin resistance. Targeting TAMs is a promising therapeutic strategy to enhance the effects of chemotherapy oxaliplatin in HCC patients.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。