The interactome of metabolic enzyme carbonic anhydrase IX reveals novel roles in tumor cell migration and invadopodia/MMP14-mediated invasion

代谢酶碳酸酐酶 IX 的相互作用组揭示了其在肿瘤细胞迁移和侵袭性足/MMP14 介导的侵袭中的新作用

阅读:9
作者:M Swayampakula, P C McDonald, M Vallejo, E Coyaud, S C Chafe, A Westerback, G Venkateswaran, J Shankar, G Gao, E M N Laurent, Y Lou, K L Bennewith, C T Supuran, I R Nabi, B Raught, S Dedhar

Abstract

Carbonic anhydrase IX (CAIX) is a hypoxia inducible factor 1-induced, cell surface pH regulating enzyme with an established role in tumor progression and clinical outcome. However, the molecular basis of CAIX-mediated tumor progression remains unclear. Here, we have utilized proximity dependent biotinylation (BioID) to map the CAIX 'interactome' in breast cancer cells in order to identify physiologically relevant CAIX-associating proteins with potential roles in tumor progression. High confidence proteins identified include metabolic transporters, β1 integrins, integrin-associated protein CD98hc and matrix metalloprotease 14 (MMP14). Biochemical studies validate the association of CAIX with α2β1 integrin, CD98hc and MMP14, and immunofluorescence microscopy demonstrates colocalization of CAIX with α2β1 integrin and MMP14 in F-actin/cofilin-positive lamellipodia/pseudopodia, and with MMP14 to cortactin/Tks5-positive invadopodia. Modulation of CAIX expression and activity results in significant changes in cell migration, collagen degradation and invasion. Mechanistically, we demonstrate that CAIX associates with MMP14 through potential phosphorylation residues within its intracellular domain, and that CAIX enhances MMP14-mediated collagen degradation by directly contributing hydrogen ions required for MMP14 catalytic activity. These findings establish hypoxia-induced CAIX as a novel metabolic component of cellular migration and invasion structures, and provide new mechanistic insights into its role in tumor cell biology.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。