Transcriptome profiling reveals new insights into the roles of neuronal nitric oxide synthase on macrophage polarization towards classically activated phenotype

转录组分析揭示了神经元一氧化氮合酶在巨噬细胞向经典活化表型极化中的作用的新见解

阅读:9
作者:Pingan Chang, Hao Gao, Quan Sun, Xiaohong He, Feifei Huang

Abstract

In response to various stimuli, naïve macrophages usually polarize to M1 (classically activated) or M2 (alternatively activated) cells with distinct biological functions. Neuronal nitric oxide synthase (NOS1) is involved in M1 macrophage polarization at an early stage. Here, we show for the first time that NOS1 is dispensable for M2 macrophage polarization for the first time. Further, differentially expressed genes (DEGs) regulated by NOS1 signaling in M1-polarized macrophages stimulated with lipopolysaccharide (LPS) were characterized by transcriptome analysis of wild-type (WT) and NOS1 knockout mouse macrophages. Thousands of affected genes were detected 2 h post LPS challenge, and this wide-ranging effect became greater with a longer stimulation time (8 h post LPS). NOS1 deficiency caused dysregulated expression of hundreds of LPS-responsive genes. Most DEGs were enriched in biological processes related to transcription and regulation of the immune and inflammatory response. At 2 h post-LPS, the toll-like receptor (TLR) signaling pathway, cytokine-cytokine receptor interaction, and NOD-like receptor signaling pathway were the major pathways affected, whereas the main pathways affected at 8 h post-LPS were Th1 and Th2 cell differentiation, FoxO, and AMPK signaling pathway. Identified DEGs were validated by real-time quantitative PCR and interacted in a complicated signaling pathway network. Collectively, our data show that NOS1 is dispensable for M2 macrophage polarization and reveal novel insights in the role of NOS1 signaling at different stages of M1 macrophage polarization through distinct TLR4 plasma membrane-localized and endosome-internalized signaling pathways.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。