Enhanced rice salinity tolerance via CRISPR/Cas9-targeted mutagenesis of the OsRR22 gene

通过 CRISPR/Cas9 靶向诱变 OsRR22 基因增强水稻耐盐性

阅读:5
作者:Anning Zhang, Yi Liu, Feiming Wang, Tianfei Li, Zhihao Chen, Deyan Kong, Junguo Bi, Fenyun Zhang, Xingxing Luo, Jiahong Wang, Jinjuan Tang, Xinqiao Yu, Guolan Liu, Lijun Luo

Abstract

Salinity is one of the most important abiotic stress affecting the world rice production. The cultivation of salinity-tolerant cultivars is the most cost-effective and environmentally friendly approach for salinity control. In recent years, CRISPR/Cas9 systems have been widely used for target-site genome editing; however, their application for the improvement of elite rice cultivars has rarely been reported. Here, we report the improvement of the rice salinity tolerance by engineering a Cas9-OsRR22-gRNA expressing vector, targeting the OsRR22 gene in rice. Nine mutant plants were identified from 14 T0 transgenic plants. Sequencing showed that these plants had six mutation types at the target site, all of which were successfully transmitted to the next generations. Mutant plants without transferred DNA (T-DNA) were obtained via segregation in the T1 generations. Two T2 homozygous mutant lines were further examined for their salinity tolerance and agronomic traits. The results showed that, at the seedling stage, the salinity tolerance of T2 homozygous mutant lines was significantly enhanced compared to wild-type plants. Furthermore, no significantly different agronomic traits were found between T2 homozygous mutant lines and wild-type plants. Our results indicate CRISPR/ Cas9 as a useful approach to enhance the salinity tolerance of rice.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。