Preclinical model for phenotypic correction of dystrophic epidermolysis bullosa by in vivo CRISPR-Cas9 delivery using adenoviral vectors

使用腺病毒载体进行体内 CRISPR-Cas9 递送以纠正营养不良性大疱性表型的临床前模型

阅读:5
作者:Marta García, Jose Bonafont, Jesús Martínez-Palacios, Rudan Xu, Giandomenico Turchiano, Stina Svensson, Adrian J Thrasher, Fernando Larcher, Marcela Del Rio, Rubén Hernández-Alcoceba, Marina I Garín, Ángeles Mencía, Rodolfo Murillas

Abstract

Recessive dystrophic epidermolysis bullosa, a devastating skin fragility disease characterized by recurrent skin blistering, scarring, and a high risk of developing squamous cell carcinoma is caused by mutations in COL7A1, the gene encoding type VII collagen, which is the major component of the anchoring fibrils that bind the dermis and epidermis. Ex vivo correction of COL7A1 by gene editing in patients' cells has been achieved before. However, in vivo editing approaches are necessary to address the direct treatment of the blistering lesions characteristic of this disease. We have now generated adenoviral vectors for CRISPR-Cas9 delivery to remove exon 80 of COL7A1, which contains a highly prevalent frameshift mutation in Spanish patients. For in vivo testing, a humanized skin mouse model was used. Efficient viral transduction of skin was observed after excisional wounds generated with a surgical punch on regenerated patient skin grafts were filled with the adenoviral vectors embedded in a fibrin gel. Type VII collagen deposition in the basement membrane zone of the wounded areas treated with the vectors correlated with restoration of dermal-epidermal adhesion, demonstrating that recessive dystrophic epidermolysis bullosa (RDEB) patient skin lesions can be directly treated by CRISPR-Cas9 delivery in vivo.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。