Lactic acid bacterium, Lactobacillus paracasei KW3110, suppresses inflammatory stress-induced caspase-1 activation by promoting interleukin-10 production in mouse and human immune cells

乳酸菌副干酪乳杆菌 KW3110 通过促进小鼠和人类免疫细胞中白细胞介素 10 的产生来抑制炎症应激诱导的 caspase-1 活化

阅读:5
作者:Takahiro Yamazaki, Konomi Ohshio, Miho Sugamata, Yuji Morita

Abstract

A strain of lactic acid bacteria, Lactobacillus paracasei KW3110 (KW3110), activates M2 macrophages with anti-inflammatory reactions and mitigates aging-related chronic inflammation and blue-light exposure-induced retinal inflammation in mice. However, the mechanism underlying the anti-inflammatory effects of KW3110 remains unclear. In this study, we investigated the anti-inflammatory effects of KW3110 using both mouse and human immune cells and evaluated the suppressive effect of KW3110 on the inflammatory reactions of the cells stimulated with lipopolysaccharide and adenosine 5'-triphosphate (LPS/ATP). KW3110 treatment induced anti-inflammatory cytokine interleukin (IL)-10 production in the supernatants of murine macrophage-like cells, J774A.1, and suppressed IL-1β production in the supernatants of LPS/ATP-stimulated cells. The influence of KW3110 on the production of these cytokines was inhibited by pre-treatment with phagocytosis blocker or transfection with siRNAs for IL-10 signaling components. KW3110 treatment also suppressed activation of caspase-1, an active component of inflammasome complexes, in LPS/ATP-stimulated J774A.1 cells, and its effect was inhibited by transfection with siRNAs for IL-10 signaling components. In addition to the effects of KW3110 on J774A.1 cells, KW3110 treatment induced IL-10 production in the supernatants of human monocytes, and KW3110 or IL-10 treatment suppressed caspase-1 activation and IL-1β production in the supernatants of LPS/ATP-stimulated cells. These results suggest that KW3110 suppresses LPS/ATP stimulation-induced caspase-1 activation and IL-1β production by promoting IL-10 production in mouse and human immune cells. Our findings reveal a novel anti-inflammatory mechanism of LAB and the effect of KW3110 on caspase-1 activation is expected to contribute to constructing future preventive strategies for inflammation-related disorders using food ingredients.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。