AGL9: A Novel Hepatoprotective Peptide from the Larvae of Edible Insects Alleviates Obesity-Induced Hepatic Inflammation by Regulating AMPK/Nrf2 Signaling

AGL9:一种来自食用昆虫幼虫的新型保肝肽,通过调节 AMPK/Nrf2 信号传导缓解肥胖引起的肝脏炎症

阅读:6
作者:Meiqi Fan, Young-Jin Choi, Yujiao Tang, Ji Hye Kim, Byung-Gyu Kim, Bokyung Lee, Sung Mun Bae, Eun-Kyung Kim

Abstract

In this study, we investigated the anti-obesity properties of the novel peptide Ala-Gly-Leu-Gln-Phe-Pro-Val-Gly-Arg (AGL9), isolated from the enzymatic hydrolysate of Allomyrinadichotoma larvae. To investigate the preventive effects of AGL9 against hepatic steatosis and its possible mechanisms of action, we established an nonalcoholic fatty liver disease (NAFLD) model by feeding C57BL/6 mice a high-fat diet. NAFLD mice were administered 100 mg/kg AGL9 and 60 mg/kg orlistat via gavage (10 mL/kg) for 5 weeks, followed by the collection of blood and liver tissues. We found that AGL9 normalized the levels of serum alanine aminotransferase, aspartate aminotransferase, triglyceride, total cholesterol, high-density lipoprotein, very low-density lipoprotein (LDL)/LDL, adiponectin, and leptin in these mice. Additionally, AGL9 activated the protein-level expression of 5' AMP-activated protein kinase and acetyl-CoA carboxylase phosphorylation and the transcript-level expression of sterol regulatory element-binding protein-1c, fatty acid synthase, superoxide dismutase, glutathione peroxidase, glucocorticoid receptor, nuclear respiratory factor 2, tumor necrosis factor-α, interleukin-1β, interleukin-6, and monocyte chemoattractant protein-1 in hepatocytes. These results showed that AGL9 exhibited hepatoprotective effects by attenuating lipid deposition, oxidative stress, and inflammation via inhibition of AMPK/Nrf2 signaling, thereby reducing the production of hepatic proinflammatory mediators and indicating AGL9 as a potential therapeutic strategy for NAFLD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。