A conditional null allele of Dync1h1 enables targeted analyses of dynein roles in neuronal length sensing

Dync1h1 的条件无效等位基因可以针对性地分析运动蛋白在神经元长度感知中的作用

阅读:4
作者:Agostina Di Pizio, Letizia Marvaldi, Marie-Christine Birling, Nataliya Okladnikov, Luc Dupuis, Mike Fainzilber, Ida Rishal

Abstract

Size homeostasis is a fundamental process in biology and is particularly important for large cells such as neurons. We previously proposed a motor-dependent length-sensing mechanism wherein reductions in microtubule motor levels would be expected to accelerate neuronal growth, and validated this prediction in dynein heavy chain 1 Loa mutant (Dync1h1Loa) sensory neurons. Here, we describe a new mouse model with a conditional deletion allele of exons 24 and 25 in Dync1h1. Homozygous Islet1-Cre-mediated deletion of Dync1h1 (Isl1-Dync1h1-/-), which deletes protein from the motor and sensory neurons, is embryonic lethal, but heterozygous animals (Isl1-Dync1h1+/-) survive to adulthood with ∼50% dynein expression in targeted cells. Isl1-Dync1h1+/- sensory neurons reveal accelerated growth, as previously reported in Dync1h1Loa neurons. Moreover, Isl1-Dync1h1+/- mice show mild impairments in gait, proprioception and tactile sensation, similar to what is seen in Dync1h1Loa mice, confirming that specific aspects of the Loa phenotype are due to reduced dynein levels. Isl1-Dync1h1+/- mice also show delayed recovery from peripheral nerve injury, likely due to reduced injury signal delivery from axonal lesion sites. Thus, conditional deletion of Dync1h1 exons 24 and 25 enables targeted studies of the role of dynein in neuronal growth.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。