Restoration of cone vision in the CNGA3-/- mouse model of congenital complete lack of cone photoreceptor function

先天性完全缺乏视锥光感受器功能的 CNGA3-/- 小鼠模型中的视锥视觉恢复

阅读:5
作者:Stylianos Michalakis, Regine Mühlfriedel, Naoyuki Tanimoto, Vidhyasankar Krishnamoorthy, Susanne Koch, M Dominik Fischer, Elvir Becirovic, Lin Bai, Gesine Huber, Susanne C Beck, Edda Fahl, Hildegard Büning, François Paquet-Durand, Xiangang Zong, Tim Gollisch, Martin Biel, Mathias W Seeliger

Abstract

Congenital absence of cone photoreceptor function is associated with strongly impaired daylight vision and loss of color discrimination in human achromatopsia. Here, we introduce viral gene replacement therapy as a potential treatment for this disease in the CNGA3(-/-) mouse model. We show that such therapy can restore cone-specific visual processing in the central nervous system even if cone photoreceptors had been nonfunctional from birth. The restoration of cone vision was assessed at different stages along the visual pathway. Treated CNGA3(-/-) mice were able to generate cone photoreceptor responses and to transfer these signals to bipolar cells. In support, we found morphologically that treated cones expressed regular cyclic nucleotide-gated (CNG) channel complexes and opsins in outer segments, which previously they did not. Moreover, expression of CNGA3 normalized cyclic guanosine monophosphate (cGMP) levels in cones, delayed cone cell death and reduced the inflammatory response of Müller glia cells that is typical of retinal degenerations. Furthermore, ganglion cells from treated, but not from untreated, CNGA3(-/-) mice displayed cone-driven, light-evoked, spiking activity, indicating that signals generated in the outer retina are transmitted to the brain. Finally, we demonstrate that this newly acquired sensory information was translated into cone-mediated, vision-guided behavior.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。