Deubiquitinating Enzyme USP9X Suppresses Tumor Growth via LATS Kinase and Core Components of the Hippo Pathway

去泛素化酶 USP9X 通过 LATS 激酶和 Hippo 通路的核心成分抑制肿瘤生长

阅读:4
作者:Aleksandra Toloczko, Fusheng Guo, Hiu-Fung Yuen, Qing Wen, Stephen A Wood, Yan Shan Ong, Pei Yi Chan, Asfa Alli Shaik, Jayantha Gunaratne, Mark J Dunne, Wanjin Hong, Siew Wee Chan

Abstract

The core LATS kinases of the Hippo tumor suppressor pathway phosphorylate and inhibit the downstream transcriptional co-activators YAP and TAZ, which are implicated in various cancers. Recent studies have identified various E3 ubiquitin ligases that negatively regulate the Hippo pathway via ubiquitination, yet few deubiquitinating enzymes (DUB) have been implicated. In this study, we report the DUB USP9X is an important regulator of the core kinases of this pathway. USP9X interacted strongly with LATS kinase and to a lesser extent with WW45, KIBRA, and Angiomotin, and LATS co-migrated exclusively with USP9X during gel filtration chromatography analysis. Knockdown of USP9X significantly downregulated and destabilized LATS and resulted in enhanced nuclear translocation of YAP and TAZ, accompanied with activation of their target genes. In the absence of USP9X, cells exhibited an epithelial-to-mesenchymal transition phenotype, acquired anchorage-independent growth in soft agar, and led to enlarged, disorganized, three-dimensional acini. YAP/TAZ target gene activation in response to USP9X knockdown was suppressed by knockdown of YAP, TAZ, and TEAD2. Deletion of USP9X in mouse embryonic fibroblasts resulted in significant downregulation of LATS. Furthermore, USP9X protein expression correlated positively with LATS but negatively with YAP/TAZ in pancreatic cancer tissues as well as pancreatic and breast cancer cell lines. Overall, these results strongly indicate that USP9X potentiates LATS kinase to suppress tumor growth. Cancer Res; 77(18); 4921-33. ©2017 AACR.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。