Biologically Synthesized Rosa rugosa-Based Gold Nanoparticles Suppress Skin Inflammatory Responses via MAPK and NF-κB Signaling Pathway in TNF-α/IFN-γ-Induced HaCaT Keratinocytes

生物合成的玫瑰金纳米粒子通过 MAPK 和 NF-κB 信号通路抑制 TNF-α/IFN-γ 诱导的 HaCaT 角质形成细胞中的皮肤炎症反应

阅读:5
作者:Rongbo Wang, Sung-Kwon Moon, Woo-Jung Kim, Sanjeevram Dhandapani, Hoon Kim, Yeon-Ju Kim

Abstract

Nanotechnology-applied materials and related therapeutics have gained attention for treating inflammatory skin diseases. The beach rose (Rosa rugosa), belonging to the family Rosaceae, is a perennial, deciduous woody shrub endemic to northeastern Asia. In this study, R. rugosa-based gold nanoparticles (RR-AuNPs) were biologically synthesized under optimal conditions to explore their potential as anti-inflammatory agents for treating skin inflammation. The synthesized RR-AuNPs were analyzed using field emission-transmission electron microscopy, energy-dispersive X-ray spectrometry, selected-area electron diffraction, and X-ray diffraction. The uniformly well-structured AuNPs showed near-spherical and polygonal shapes. Cell viability evaluation and optical observation results showed that the RR-AuNPs were absorbed by human keratinocytes without causing cytotoxic effects. The effects of RR-AuNPs on the skin inflammatory response were investigated in human keratinocytes treated with tumor necrosis factor-α/interferon-γ (T + I). The results showed that T + I-stimulated increases in inflammatory mediators, including chemokines, interleukins, and reactive oxygen species, were significantly suppressed by RR-AuNP treatment in a concentration-dependent manner. The western blotting results indicated that the RR-AuNP-mediated anti-inflammatory effects were highly associated with the suppression of inflammatory signaling, mitogen-activated protein kinase, and nuclear factor-κB. These results demonstrate that plant extract-based AuNPs are novel anti-inflammatory candidates for topical application to treat skin inflammation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。