Conditional Deletion of CC2D1A Reduces Hippocampal Synaptic Plasticity and Impairs Cognitive Function through Rac1 Hyperactivation

CC2D1A 的条件性缺失会降低海马突触可塑性,并通过 Rac1 过度激活损害认知功能

阅读:3
作者:Cheng-Yi Yang, Ting-Hsuan Yu, Wan-Ling Wen, Pin Ling, Kuei-Sen Hsu

Abstract

Coiled-coil and C2 domain containing 1A (CC2D1A) is an evolutionarily conserved protein, originally identified as a nuclear factor-κB activator through a large-scale screen of human genes. Mutations in the human Cc2d1a gene result in autosomal recessive nonsyndromic intellectual disability. It remains unclear, however, how Cc2d1a mutation leads to alterations in brain function. Here, we have taken advantage of Cre/loxP recombinase-based strategy to conditionally delete Cc2d1a exclusively from excitatory neurons of male mouse forebrain to examine its role in hippocampal synaptic plasticity and cognitive function. We confirmed the expression of CC2D1A protein and mRNA in the mouse hippocampus. Double immunofluorescence staining showed that CC2D1A is expressed in both excitatory and inhibitory neurons of the adult hippocampus. Conditional deletion of Cc2d1a (cKO) from excitatory neurons leads to impaired performance in object location memory test and altered anxiety-like behavior. Consistently, cKO mice displayed a deficit in the maintenance of LTP in the CA1 region of hippocampal slices. Cc2d1a deletion also resulted in decreased complexity of apical and basal dendritic arbors of CA1 pyramidal neurons. An enhanced basal Rac1 activity was observed following Cc2d1a deletion, and this enhancement was mediated by reduced SUMO-specific protease 1 (SENP1) and SENP3 expression, thus increasing the amount of Rac1 SUMOylation. Furthermore, partial blockade of Rac1 activity rescued impairments in LTP and object location memory performance in cKO mice. Together, our results implicate Rac1 hyperactivity in synaptic plasticity and cognitive deficits observed in Cc2d1a cKO mice and reveal a novel role for CC2D1A in regulating hippocampal synaptic function.SIGNIFICANCE STATEMENT CC2D1A is abundantly expressed in the brain, but there is little known about its physiological function. Taking advantage of Cc2d1a cKO mice, the present study highlights the importance of CC2D1A in the maintenance of LTP at Schaffer collateral-CA1 synapses and the formation of hippocampus-dependent long-term object location memory. Our findings establish a critical link between elevated Rac1 activity, structural and synaptic plasticity alterations, and cognitive impairment caused by Cc2d1a deletion. Moreover, partial blockade of Rac1 activity rescues synaptic plasticity and memory deficits in Cc2d1a cKO mice. Such insights may have implications for the utility of Rac1 inhibitors in the treatment of intellectual disability caused by Cc2d1a mutations in human patients.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。