Loss of X-linked Protocadherin-19 differentially affects the behavior of heterozygous female and hemizygous male mice

连锁原钙粘蛋白-19 的缺失对杂合雌性和半合雄性小鼠的行为有不同的影响

阅读:8
作者:Shuichi Hayashi, Yoko Inoue, Satoko Hattori, Mari Kaneko, Go Shioi, Tsuyoshi Miyakawa, Masatoshi Takeichi

Abstract

Mutations in the X-linked gene Protocadherin-19 (Pcdh19) cause female-limited epilepsy and mental retardation in humans. Although Pcdh19 is known to be a homophilic cell-cell adhesion molecule, how its mutations bring about female-specific disorders remains elusive. Here, we report the effects of Pcdh19 knockout in mice on their development and behavior. Pcdh19 was expressed in various brain regions including the cerebral cortex and hippocampus. Although Pcdh19-positive cells were evenly distributed in layer V of wild-type cortices, their distribution became a mosaic in Pcdh19 heterozygous female cortices. In cortical and hippocampal neurons, Pcdh19 was localized along their dendrites, showing occasional accumulation on synapses. Pcdh19 mutants, however, displayed no detectable abnormalities in dendrite and spine morphology of layer V neurons. Nevertheless, Pcdh19 hemizygous males and heterozygous females showed impaired behaviors including activity defects under stress conditions. Notably, only heterozygous females exhibited decreased fear responses. In addition, Pcdh19 overexpression in wild-type cortices led to ectopic clustering of Pcdh19-positive neurons. These results suggest that Pcdh19 is required for behavioral control in mice, but its genetic loss differentially affects the male and female behavior, as seen in human, and they also support the hypothesis that the mosaic expression of Pcdh19 in brains perturbs neuronal interactions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。