Conclusions
These findings represent the first preterm milk feed mass spectrometry and protease analysis with identification of known allergenic proteins to food, contact, and aeroallergens. These results raise questions of whether the composition of milk feeds in the neonatal intensive care unit impact the development of atopic disease in the preterm population and whether the complex interaction between allergens, proteases, and other HM components can serve to induce sensitization or tolerance to allergens in infants. Clinical
Methods
To evaluate feasibility, we initially performed mass spectrometry on 4 human milk (HM) samples (2 term and 2 preterm) from the Mommy's Milk Human Milk Biorepository (HMB) and analyzed the
Results
Each HMB sample had between 806 and 1,007 proteins, with 37-44 nonhuman proteins/sample encompassing 26 plant and animal species. In the preterm MAP samples, 784 digested nonhuman proteins were identified, 30 were nonbovine in origin. Proteins from 23 different species including aeroallergens, food, and contact allergens were identified. Protease activity was highest in HM samples without human milk fortifier and lowest in preterm formula. Conclusions: These findings represent the first preterm milk feed mass spectrometry and protease analysis with identification of known allergenic proteins to food, contact, and aeroallergens. These results raise questions of whether the composition of milk feeds in the neonatal intensive care unit impact the development of atopic disease in the preterm population and whether the complex interaction between allergens, proteases, and other HM components can serve to induce sensitization or tolerance to allergens in infants. Clinical
