Synergistic effects of long-term antioxidant diet and behavioral enrichment on beta-amyloid load and non-amyloidogenic processing in aged canines

长期抗氧化饮食和行为丰富对老年犬β-淀粉样蛋白负荷和非淀粉样变性加工的协同作用

阅读:4
作者:Viorela Pop, Elizabeth Head, Mary-Ann Hill, Dan Gillen, Nicole C Berchtold, Bruce A Muggenburg, Norton W Milgram, M Paul Murphy, Carl W Cotman

Abstract

A long-term intervention (2.69 years) with an antioxidant diet, behavioral enrichment, or the combined treatment preserved and improved cognitive function in aged canines. Although each intervention alone provided cognitive benefits, the combination treatment was additive. We evaluate the hypothesis that antioxidants, enrichment, or the combination intervention reduces age-related beta-amyloid (Abeta) neuropathology, as one mechanism mediating observed functional improvements. Measures assessed were Abeta neuropathology in plaques, biochemically extractable Abeta(40) and Abeta(42) species, soluble oligomeric forms of Abeta, and various proteins in the beta-amyloid precursor protein (APP) processing pathway. The strongest and most consistent effects on Abeta pathology were observed in animals receiving the combined antioxidant and enrichment treatment. Specifically, Abeta plaque load was significantly decreased in several brain regions, soluble Abeta(42) was decreased selectively in the frontal cortex, and a trend for lower Abeta oligomer levels was found in the parietal cortex. Reductions in Abeta may be related to shifted APP processing toward the non-amyloidogenic pathway, because alpha-secretase enzymatic activity was increased in the absence of changes in beta-secretase activity. Although enrichment alone had no significant effects on Abeta, reduced Abeta load and plaque maturation occurred in animals receiving antioxidants as a component of treatment. Abeta measures did not correlate with cognitive performance on any of the six tasks assessed, suggesting that modulation of Abeta alone may be a relatively minor mechanism mediating cognitive benefits of the interventions. Overall, the data indicate that multidomain treatments may be a valuable intervention strategy to reduce neuropathology and improve cognitive function in humans.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。