Oncogenic Wip1 phosphatase is inhibited by miR-16 in the DNA damage signaling pathway

miR-16 在 DNA 损伤信号通路中抑制致癌 Wip1 磷酸酶

阅读:4
作者:Xinna Zhang, Guohui Wan, Sizolwenkosi Mlotshwa, Vicki Vance, Franklin G Berger, Hexin Chen, Xiongbin Lu

Abstract

Wild-type p53-induced phosphatase 1 (Wip1) was identified as an oncogene amplified and overexpressed in several human cancers. Recent evidence suggested that Wip1 is a critical inhibitor in the ATM/ATR-p53 DNA damage signaling pathway. Wip1 dephosphorylates several key DNA damage-responsive proteins and reverses DNA damage-induced cell cycle checkpoints. Previous reports showed that Wip1 was transcriptionally induced by p53 at the early stage of the DNA damage response. To investigate the temporal and functional regulation of Wip1, we identified a microRNA, miR-16, that specifically targets the mRNA of Wip1 and thus negatively regulates the expression level of Wip1. miR-16 itself is induced immediately after DNA damage. Therefore, the increase in Wip1 protein level is significantly postponed compared with that of its mRNA level, preventing a premature inactivation of ATM/ATR signaling and allowing a functional completion of the early DNA damage response. To better understand miR-16 biological functions in the context of cancer cells, we examined its expression in mammary tumor stem cells and found it to be markedly downregulated in mammary tumor stem cells. Overexpression of miR-16 or inhibition of Wip1 suppresses the self-renewal and growth of mouse mammary tumor stem cells and sensitizes MCF-7 human breast cancer cells to the chemotherapeutic drug doxorubicin. Together, our results suggest an important role of miR-16 in the regulation of Wip1 phosphatase in the DNA damage response and mammary tumorigenesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。