Effects of poly-γ-glutamic acid (γ-PGA) on plant growth and its distribution in a controlled plant-soil system

聚-γ-谷氨酸(γ-PGA)对植物生长及其在受控植物-土壤系统中分布的影响

阅读:5
作者:Lei Zhang, Xueming Yang, Decai Gao, Lingli Wang, Jie Li, Zhanbo Wei, Yuanliang Shi

Abstract

To demonstrate the responses of plant (Pakchoi) and soil to poly-γ-glutamic acid (γ-PGA) is essential to better understand the pathways of the promotional effect of γ-PGA on plant growth. In this study, the effects of γ-PGA on soil nutrient availability, plant nutrient uptake ability, plant metabolism and its distribution in a plant-soil system were tested using labeled γ-PGA synthesized from 13C1-15N-L-glutamic acid (L-Glu). γ-PGA significantly improved plant uptake of nitrogen (N), phosphorus (P), and potassium (K) and hence increased plant biomass. γ-PGA greatly strengthened the plant nutrient uptake capacity through enhancing both root biomass and activity. γ-PGA affected carbon (C) and N metabolism in plant which was evidenced with increased soluble sugar contents and decreased nitrate and free amino acids contents. About 26.5% of the γ-PGA-N uptake during the first 24 h, after γ-PGA application, was in the form of intact organic molecular. At plant harvest, 29.7% and 59.4% of γ-PGA-15N was recovered in plant and soil, respectively, with a 5.64% of plant N nutrition being derived from γ-PGA-N. The improved plant nutrient uptake capacity and soil nutrient availability by γ-PGA may partly explain the promotional effect of γ-PGA, however, the underlying reason may be closely related to L-Glu.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。