Prostatic acid phosphatase reduces thermal sensitivity and chronic pain sensitization by depleting phosphatidylinositol 4,5-bisphosphate

前列腺酸性磷酸酶通过消耗磷脂酰肌醇 4,5-二磷酸来降低热敏感性和慢性疼痛致敏性

阅读:5
作者:Nathaniel A Sowa, Sarah E Street, Pirkko Vihko, Mark J Zylka

Abstract

Prostatic acid phosphatase (PAP) is expressed in nociceptive dorsal root ganglion (DRG) neurons, functions as an ectonucleotidase, and generates adenosine extracellularly. Here, we found that PAP inhibits noxious thermal sensitivity and sensitization that is associated with chronic pain through sustained activation of the adenosine A(1) receptor (A(1)R) and phospholipase C-mediated depletion of phosphatidylinositol 4,5-bisphosphate (PIP(2)). In mice, intrathecal injection of PAP reduced PIP(2) levels in DRGs, inhibited thermosensation through TRPV1, and enduringly reduced thermal hyperalgesia and mechanical allodynia caused by inflammation, nerve injury, and pronociceptive receptor activation. This included inhibitory effects on lysophosphatidic acid, purinergic (ATP), bradykinin, and protease-activated (thrombin) receptors. Conversely, PIP(2) levels were significantly elevated in DRGs from Pap(-/-) mice, and this correlated with enhanced thermal hyperalgesia and mechanical allodynia in Pap(-/-) mice. To directly test the importance of PIP(2) in nociception, we intrathecally injected PIP(2) into mice. This transiently (2 h) elevated PIP(2) levels in lumbar DRGs and transiently (2 h) enhanced thermosensation. Additionally, thermal hyperalgesia and mechanical allodynia were enduringly enhanced when PIP(2) levels were elevated coincident with injury/pronociceptive receptor stimulation. Nociceptive sensitization was not affected if PIP(2) levels were elevated in the absence of ongoing pronociceptive receptor stimulation. Together, our data suggest that PIP(2) levels in DRGs directly influence thermosensation and the magnitude of nociceptive sensitization. Moreover, our data suggest there is an underlying "phosphoinositide tone" that can be manipulated by an adenosine-generating ectonucleotidase. This tone regulates how effectively acute nociceptive insults promote the transition to chronic pain.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。