Ca(v)3.2 T-type Ca2+ channel-dependent activation of ERK in paraventricular thalamus modulates acid-induced chronic muscle pain

丘脑室旁核中 Ca(v)3.2 T 型 Ca2+ 通道依赖性 ERK 激活调节酸诱导的慢性肌肉疼痛

阅读:4
作者:Wen-Kwei Chen, Ingrid Y Liu, Ya-Ting Chang, Yong-Cyuan Chen, Chih-Cheng Chen, Chen-Tung Yen, Hee-Sup Shin, Chien-Chang Chen

Abstract

Treatments for chronic musculoskeletal pain, such as lower back pain, fibromyalgia, and myofascial pain syndrome, remain inadequate because of our poor understanding of the mechanisms that underlie these conditions. Although T-type Ca2+ channels (T-channels) have been implicated in peripheral and central pain sensory pathways, their role in chronic musculoskeletal pain is still unclear. Here, we show that acid-induced chronic mechanical hyperalgesia develops in Ca(v)3.1-deficient and wild-type but not in Ca(v)3.2-deficient male and female mice. We also show that T-channels are required for the initiation, but not maintenance, of acid-induced chronic muscle pain. Blocking T-channels using ethosuximide prevented chronic mechanical hyperalgesia in wild-type mice when administered intraperitoneally or intracerebroventricularly, but not intramuscularly or intrathecally. Furthermore, we found an acid-induced, Ca(v)3.2 T-channel-dependent activation of ERK (extracellular signal-regulated kinase) in the anterior nucleus of paraventricular thalamus (PVA), and prevention of the ERK activation abolished the chronic mechanical hyperalgesia. Our findings suggest that Ca(v)3.2 T-channel-dependent activation of ERK in PVA is required for the development of acid-induced chronic mechanical hyperalgesia.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。