Development of a pan-neuronal genetic driver in Aedes aegypti mosquitoes

埃及伊蚊泛神经元遗传驱动基因的开发

阅读:7
作者:Zhilei Zhao, David Tian, Carolyn S McBride

Abstract

The recent development of neurogenetic tools in Aedes aegypti mosquitoes is beginning to shed light on the neural basis of behaviors that make this species a major vector of human disease. However, we still lack a pan-neuronal expression driver-a key tool that provides genetic access to all neurons. Here, we describe our efforts to fill this gap via CRISPR/Cas9-mediated knock-in of reporters to broadly expressed neural genes and report on the generation of two strains, a Syt1:GCaMP6s strain that expresses synaptically localized GCaMP and a brp-T2A-QF2w driver strain that can be used to drive and amplify expression of any effector via the Q binary system. Both manipulations broadly and uniformly label the nervous system with only modest effects on behavior. We expect these strains to facilitate neurobiological research in Ae. aegypti mosquitoes and document both successful and failed manipulations as a roadmap for similar tool development in other non-model species.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。