Synapse-specific compartmentalization of signaling cascades for LTP induction in CA3 interneurons

突触特异性信号级联区域化用于 CA3 中间神经元中的 LTP 诱导

阅读:5
作者:E J Galván, T Pérez-Rosello, G Gómez-Lira, E Lara, R Gutiérrez, G Barrionuevo

Abstract

Inhibitory interneurons with somata in strata radiatum and lacunosum-molecular (SR/L-M) of hippocampal area CA3 receive excitatory input from pyramidal cells via the recurrent collaterals (RCs), and the dentate gyrus granule cells via the mossy fibers (MFs). Here we demonstrate that Hebbian long-term potentiation (LTP) at RC synapses on SR/L-M interneurons requires the concomitant activation of calcium-impermeable AMPARs (CI-AMPARs) and N-methyl-d-aspartate receptors (NMDARs). RC LTP was prevented by voltage clamping the postsynaptic cell during high-frequency stimulation (HFS; 3 trains of 100 pulses delivered at 100 Hz every 10s), with intracellular injections of the Ca(2+) chelator BAPTA (20mM), and with the NMDAR antagonist D-AP5. In separate experiments, RC and MF inputs converging onto the same interneuron were sequentially activated. We found that RC LTP induction was blocked by inhibitors of the calcium/calmodulin-dependent protein kinase II (CaMKII; KN-62, 10 μM or KN-93, 10 μM) but MF LTP was CaMKII independent. Conversely, the application of the protein kinase A (PKA) activators forskolin/IBMX (50 μM/25 μM) potentiated MF EPSPs but not RC EPSPs. Together these data indicate that the aspiny dendrites of SR/L-M interneurons compartmentalize synapse-specific Ca(2+) signaling required for LTP induction at RC and MF synapses. We also show that the two signal transduction cascades converge to activate a common effector, protein kinase C (PKC). Specifically, LTP at RC and MF synapses on the same SR/LM interneuron was blocked by postsynaptic injections of chelerythrine (10 μM). These data indicate that both forms of LTP share a common mechanism involving PKC-dependent signaling modulation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。