Low endogenous G-protein-coupled receptor kinase 2 sensitizes the immature brain to hypoxia-ischemia-induced gray and white matter damage

低内源性 G 蛋白偶联受体激酶 2 使未成熟大脑对缺氧缺血引起的灰质和白质损伤敏感

阅读:7
作者:Cora H A Nijboer, Annemieke Kavelaars, Anne Vroon, Floris Groenendaal, Frank van Bel, Cobi J Heijnen

Abstract

Hypoxic-ischemic brain injury is regulated in part by neurotransmitter and chemokine signaling via G-protein-coupled receptors (GPCRs). GPCR-kinase 2 (GRK2) protects these receptors against overstimulation by inducing desensitization. Neonatal hypoxic-ischemic brain damage is preceded by a reduction in cerebral GRK2 expression. We determined the functional importance of GRK2 in hypoxic-ischemic brain damage. Nine-day-old wild-type and GRK2(+/-) mice with a approximately 50% reduction in GRK2 protein were exposed to unilateral carotid artery occlusion and hypoxia. In GRK2(+/-) animals, gray and white matter damage was aggravated at 3 weeks after hypoxia-ischemia. In addition, cerebral neutrophil infiltration was increased in GRK2(+/-) animals. Neutrophil depletion reduced brain damage, but neuronal loss was still more pronounced in GRK2(+/-) animals. Onset of neuronal loss was advanced in GRK2(+/-) animals regardless of neutrophil depletion. White matter injury was advanced in GRK2(+/-) animals and was not affected by neutrophil depletion. Activation/infiltration of microglia/macrophages was stronger in GRK2(+/-) brains but only occurred 24 h after hypoxia-ischemia and is therefore not the primary cause of increased damage. During hypoxia, cerebral blood flow was reduced to the same extent in both genotypes. In vitro, GRK2(+/-) hippocampal slices and cerebellar granular neurons were more sensitive to glutamate-induced death. We propose the novel concept that the kinase GRK2 regulates onset and magnitude of hypoxic-ischemic brain damage. Increased gray and white matter damage in GRK2(+/-) animals was not dependent on infiltrating neutrophils and occurred before microglia/macrophage activation was detected. Collectively, our data suggest that cerebral GRK2 has an important endogenous neuroprotective role in ischemic cerebral damage.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。