The dynamics of microbial community and flavor metabolites during the acetic acid fermentation of Hongqu aromatic vinegar

红曲香醋醋酸发酵过程中微生物群落及风味代谢物的动态

阅读:5
作者:Wen-Long Li, Shan-Gong Tong, Zi-Yi Yang, Yan-Qin Xiao, Xu-Cong Lv, Qi Weng, Kui Yu, Gui-Rong Liu, Xiao-Qing Luo, Tao Wei, Jin-Zhi Han, Lian-Zhong Ai, Li Ni

Abstract

In this study, we investigated the dynamics of microbial community and flavor metabolites during the traditional fermentation of Hongqu aromatic vinegar (HAV) and subsequently explored the potential relationship between microbiota and flavor metabolites. The microbiome analysis based on high-throughput sequencing (HTS) of amplicons demonstrated that Lactobacillus, Acetobacter and Clostridium were the dominant bacterial genera, while Alternaria, Candida, Aspergillus and Issatchenkia were the dominant fungal genera during the acetic acid fermentation (AAF) of HAV. A total of 101 volatile flavor compounds were identified through gas chromatography-mass spectrometry (GC-MS) during HAV fermentation, including esters (35), alcohols (17), aldehydes (11), acids (11), ketones (7), phenols (10), and others (10). Redundancy analysis (RDA) was used to reveal the correlation between microbiota and volatile flavor compounds. Lactobacillus and Acetobacter were the two bacterial genera that have the great influence on the production of volatile flavor components in HAV. Among them, Lactobacillus was positively correlated with a variety of ethyl esters, while Acetobacter positively contributed to the formation of several organic acids. Furthermore, the non-volatile metabolites were detected by ultra-high-performance liquid chromatography with quadrupole time-of-flight mass spectrometry (UPLC-QTOF/MS). A total of 41 dipeptides were identified during HAV fermentation, and most of them may have sensory characteristics and biological activities. RDA showed that Aspergillus, Epicoccum, Issatchenkia, Candida and Malassezia were the most influential fungal genera on non-volatile metabolites. In particular, Epicoccum was first reported in Hongqu vinegar and showed a positive correlation with the production of various organic acids. In conclusion, this study provides a scientific basis for understanding the flavor generation mechanism of HAV, and may be valuable for developing effective techniques to select suitable strains to improve the flavor quality of HAV.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。