BACE1-/- mice exhibit seizure activity that does not correlate with sodium channel level or axonal localization

BACE1-/- 小鼠表现出的癫痫发作与钠通道水平或轴突定位无关

阅读:5
作者:Brian D Hitt, Thomas C Jaramillo, Dane M Chetkovich, Robert Vassar

Background

BACE1 is a key enzyme in the generation of the Abeta peptide that plays a central role in the pathogenesis of Alzheimer's disease. While BACE1 is an attractive therapeutic target, its normal physiological function remains largely unknown. Examination of BACE1-/- mice can provide insight into this function and also help anticipate consequences of BACE1 inhibition. Here we report a seizure-susceptibility phenotype that we have identified and characterized in BACE1-/- mice.

Conclusions

Our data indicate that BACE1 deficiency predisposes mice to spontaneous and pharmacologically-induced seizure activity. This finding has implications for the development of safe therapeutic strategies for reducing Abeta levels in Alzheimer's disease. Further, we demonstrate that altered sodium channel expression and axonal localization are insufficient to account for the observed effect, warranting investigation of alternative mechanisms.

Results

We find that electroencephalographic recordings reveal epileptiform abnormalities in some BACE1-/- mice, occasionally including generalized tonic-clonic and absence seizures. In addition, we find that kainic acid injection induces seizures of greater severity in BACE1-/- mice relative to BACE1+/+ littermates, and causes excitotoxic cell death in a subset of BACE1-/- mice. This hyperexcitability phenotype is variable and appears to be manifest in approximately 30% of BACE1-/- mice. Finally, examination of the expression and localization of the voltage-gated sodium channel alpha-subunit Nav1.2 reveals no correlation with BACE1 genotype or any measure of seizure susceptibility. Conclusions: Our data indicate that BACE1 deficiency predisposes mice to spontaneous and pharmacologically-induced seizure activity. This finding has implications for the development of safe therapeutic strategies for reducing Abeta levels in Alzheimer's disease. Further, we demonstrate that altered sodium channel expression and axonal localization are insufficient to account for the observed effect, warranting investigation of alternative mechanisms.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。