Detection and quantification of RNA decay intermediates using XRN1-resistant reporter transcripts

使用 XRN1 抗性报告转录本检测和定量 RNA 衰变中间体

阅读:5
作者:Franka Voigt, Jennifer V Gerbracht, Volker Boehm, Ivana Horvathova, Jan Eglinger, Jeffrey A Chao, Niels H Gehring

Abstract

RNA degradation ensures appropriate levels of mRNA transcripts within cells and eliminates aberrant RNAs. Detailed studies of RNA degradation dynamics have been heretofore infeasible because of the inherent instability of degradation intermediates due to the high processivity of the enzymes involved. To visualize decay intermediates and to characterize the spatiotemporal dynamics of mRNA decay, we have developed a set of methods that apply XRN1-resistant RNA sequences (xrRNAs) to protect mRNA transcripts from 5'-3' exonucleolytic digestion. To our knowledge, this approach is the only method that can detect the directionality of mRNA degradation and that allows tracking of degradation products in unperturbed cells. Here, we provide detailed procedures for xrRNA reporter design, transfection and cell line generation. We explain how to extract xrRNA reporter mRNAs from mammalian cells, as well as their detection and quantification using northern blotting and quantitative PCR. The procedure further focuses on how to detect and quantify intact reporter mRNAs and XRN1-resistant degradation intermediates using single-molecule fluorescence microscopy. It provides detailed instructions for sample preparation and image acquisition using fixed, as well as living, cells. The procedure puts special emphasis on detailed descriptions of high-throughput image analysis pipelines, which are provided along with the article and were designed to perform spot co-localization, detection efficiency normalization and the quality control steps necessary for interpretation of results. The aim of the analysis software published here is to enable nonexpert readers to detect and quantify RNA decay intermediates within 4-6 d after reporter mRNA expression.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。