Chondroitinase ABC enhances pericontusion axonal sprouting but does not confer robust improvements in behavioral recovery

软骨素酶 ABC 可增强挫伤周围轴突的发芽,但并不能显著改善行为恢复

阅读:5
作者:Neil G Harris, Yevgeniya A Mironova, David A Hovda, Richard L Sutton

Abstract

Traumatic brain injury (TBI) results in enduring functional deficits. Strategies aimed at promoting plasticity within the injured brain may aid in enhancing functional outcome. We have previously shown that spontaneous pericontusional axon sprouting occurs within 7-14 days after controlled cortical impact injury in the adult rat, but ultimately fails due to an increasingly growth-inhibitory environment. We therefore sought to determine whether acute infusion of chondroitinase ABC into the site of the cortical contusion, to further reduce pericontusional growth-inhibitory chondroitin sulfate proteoglycans (CSPGs), would enhance and prolong the sprouting response. We also wanted to determine if chondroitinase-enhanced sprouting would ameliorate the behavioral deficits in forelimb function that occur in this model. Acute chondroitinase infusion decreased intact CSPGs and significantly increased pericontusional cortical grey and white matter growth-associated protein 43 (GAP43)-positive axon sprouting at 7 days post-injury. A return of intact CSPGs at later time points likely contributed to the absence of persistently increased levels of axon sprouting by 14-21 days post-injury. There was no overall benefit on forelimb function during the time of maximal sprouting or at any subsequent times in three of four behavioral outcome measures. However, there was a chondroitinase-induced improvement in recovery from unskilled limb use deficits on the staircase forelimb reaching test toward sham-injured values at 28 days, which was not achieved by the vehicle-treated rats, indicating that there is some minor functional benefit of the increased sprouting induced by chondroitinase treatment. The current results, together with data from spinal cord injury models after chondroitinase intervention, suggest that a combinatorial approach with the addition of neurotrophins and rehabilitation would result in more robust axon sprouting and consequently improve behavioral outcome.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。