Response of lipid metabolism, energy supply, and cell fate in yellowstripe goby (Mugilogobius chulae) exposed to environmentally relevant concentrations atorvastatin

暴露于环境相关浓度阿托伐他汀对黄条虾虎鱼(Mugilogobius chulae)脂质代谢、能量供应和细胞命运的影响

阅读:5
作者:Yufei Zhao, Chunni Duan, Huiyu Zhang, Weibo Gong, Yimeng Wang, Jinzhi Ren, Xiangping Nie, Jianjun Li

Abstract

The usage of typical pharmaceuticals and personal care products (PPCPs) such as cardiovascular and lipid-modulating drugs in clinical care accounts for the largest share of pharmaceutical consumption in most countries. Atorvastatin (ATV), one of the most commonly used lipid-lowering drugs, is frequently detected with lower concentrations in aquatic environments owing to its wide application, low removal, and degradation rates. However, the adverse effects of ATV on non-target aquatic organisms, especially the molecular mechanisms behind the toxic effects, still remain unclear. Therefore, this study investigated the potentially toxic effects of ATV exposure (including environmental concentrations) on yellowstripe goby (Mugilogobius chulae) and addressed the multi-dimensional responses. The results showed that ATV caused typical hepatotoxicity to M. chulae. ATV interfered with lipid metabolism by blocking fatty acid β-oxidation and led to the over-consumption of lipids. Thus, the exposed organism was obliged to alter the energy supply patterns and substrates utilization pathways to keep the normal energy supply. In addition, the higher concentration of ATV exposure caused oxidative stress to the organism. Subsequently, M. chulae triggered the autophagy and apoptosis processes with the help of key stress-related transcriptional regulators FOXOs and Sestrins to degrade the damaged organelles and proteins to maintain intracellular homeostasis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。