Regulation of hepatic pyruvate dehydrogenase phosphorylation in offspring glucose intolerance induced by intrauterine hyperglycemia

宫内高血糖诱发子代葡萄糖不耐受对肝丙酮酸脱氢酶磷酸化的调节

阅读:7
作者:Yong Zhang, Ying Zhang, Guo-Lian Ding, Xin-Mei Liu, Jianping Ye, Jian-Zhong Sheng, Jianxia Fan, He-Feng Huang

Aim

Gestational diabetes mellitus (GDM) has been shown to be associated with a high risk of diabetes in offspring. In mitochondria, the inhibition of pyruvate dehydrogenase (PDH) activity by PDH phosphorylation is involved in the development of diabetes. We aimed to determine the role of PDH phosphorylation in the liver in GDM-induced offspring glucose intolerance.

Conclusions

Intrauterine hyperglycemia induced offspring glucose intolerance by inhibiting PDH activity, along with increased PDH phosphorylation in the liver, and this effect might be mediated by enhanced mitochondrial protein acetylation.

Methods

We obtained lymphocytes from umbilical cord blood collected from both normal and GDM pregnant women. In addition, we obtained the offspring of streptozotocin-induced GDM female pregnant mice. The glucose tolerance test was performed to assess glucose tolerance in the offspring. Further, Western blotting was conducted to detect changes in protein levels. Conclusions: Intrauterine hyperglycemia induced offspring glucose intolerance by inhibiting PDH activity, along with increased PDH phosphorylation in the liver, and this effect might be mediated by enhanced mitochondrial protein acetylation.

Results

PDH phosphorylation was increased in lymphocytes from the umbilical cord blood of the GDM patients and in high glucose-treated hepatic cells. Both the male and female offspring from GDM mice had elevated liver weights and glucose intolerance. Further, PDH phosphorylation was increased in the livers of both the male and female offspring from GDM mice, and elevated acetylation may have contributed to this increased phosphorylation. Materials and methods: We obtained lymphocytes from umbilical cord blood collected from both normal and GDM pregnant women. In addition, we obtained the offspring of streptozotocin-induced GDM female pregnant mice. The glucose tolerance test was performed to assess glucose tolerance in the offspring. Further, Western blotting was conducted to detect changes in protein levels. Conclusions: Intrauterine hyperglycemia induced offspring glucose intolerance by inhibiting PDH activity, along with increased PDH phosphorylation in the liver, and this effect might be mediated by enhanced mitochondrial protein acetylation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。