Targeting Autophagy, Apoptosis, and Oxidative Perturbations with Dapagliflozin Mitigates Cadmium-Induced Cognitive Dysfunction in Rats

达格列净靶向自噬、细胞凋亡和氧化干扰可减轻大鼠镉诱发的认知功能障碍

阅读:3
作者:Hany H Arab, Ahmed H Eid, Shuruq E Alsufyani, Ahmed M Ashour, Azza A K El-Sheikh, Hany W Darwish, Fatma M Sabry

Abstract

Cognitive decline and Alzheimer-like neuropathology are common manifestations of cadmium toxicity. Thanks to its antioxidant/anti-apoptotic features, dapagliflozin has demonstrated promising neuroprotective actions. However, its effect on cadmium-induced neurotoxicity is lacking. The present work aimed to examine whether dapagliflozin could protect rats from cadmium-evoked cognitive decline. In this study, the behavioral disturbances and hippocampal biomolecular alterations were studied after receiving dapagliflozin. Herein, cadmium-induced memory/learning decline was rescued in the Morris water maze, novel object recognition task, and Y-shaped maze by dapagliflozin. Meanwhile, the hippocampal histopathological abnormalities were mitigated. The molecular mechanisms revealed that dapagliflozin lowered hippocampal expression of p-tau and Aβ42 neurotoxic proteins while augmenting acetylcholine. The cognitive enhancement was triggered by hippocampal autophagy stimulation, as indicated by decreased SQSTM-1/p62 and Beclin 1 upregulation. Meanwhile, a decrease in p-mTOR/total mTOR and an increase in p-AMPK/total AMPK ratio were observed in response to dapagliflozin, reflecting AMPK/mTOR cascade stimulation. Dapagliflozin, on the other hand, dampened the pro-apoptotic processes in the hippocampus by downregulating Bax, upregulating Bcl-2, and inactivating GSK-3β. The hippocampal oxidative insult was mitigated by dapagliflozin as seen by lipid peroxide lowering, antioxidants augmentation, and SIRT1/Nrf2/HO-1 pathway activation. In conclusion, dapagliflozin's promising neuroprotection was triggered by its pro-autophagic, anti-apoptotic, and antioxidant properties.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。