Fluid supplementation accelerates epithelial repair during chemical colitis

补充液体可加速化学性结肠炎期间的上皮修复

阅读:6
作者:Juan F Burgueño, Jessica K Lang, Ana M Santander, Irina Fernández, Ester Fernández, Julia Zaias, Maria T Abreu

Abstract

The dextran sulfate sodium (DSS) model of colitis is a common animal model of inflammatory bowel disease that causes pain and distress. In this study, we aimed to determine whether fluid supplementation can be used as a welfare-based intervention to minimize animal suffering. C57Bl/6 females undergoing acute colitis by administration of 3% DSS in drinking water were supplemented with 1 mL intraperitoneal injections of NaCl and compared to non-supplemented control mice. Mouse behavior and locomotive activity were assessed on days 5-6 after DSS initiation by means of tail suspension, novel object recognition and open field activity tests. Mice were euthanized after either the acute (day 7) or the recovery phase (day 12) of colitis and inflammation, epithelial proliferation, and differentiation were assessed by means of histology, immunohistochemistry, quantitative PCR, and western blot. We found that fluid-supplemented mice had reduced signs of colitis with no alterations in behavior or locomotive activity. Furthermore, we observed an accelerated epithelial repair response after fluid hydration during the acute phase of colitis, characterized by increased crypt proliferation, activation of ERK1/2, and modulation of TGF-β1 expression. Consistent with these findings, fluid-supplemented mice had increased numbers of goblet cells, upregulated expression of differentiation markers for absorptive enterocytes, and reduced inflammation during the recovery phase. Our results show that fluid hydration does not reduce stress in DSS-treated mice but alters colitis evolution by reducing clinical signs and accelerating epithelial repair. These results argue against the routine use of fluid supplementation in DSS-treated mice.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。