Cytokines secreted from bone marrow derived mesenchymal stem cells promote apoptosis and change cell cycle distribution of K562 cell line as clinical agent in cell transplantation

骨髓间充质干细胞分泌的细胞因子促进K562细胞凋亡并改变细胞周期分布作为细胞移植的临床药物

阅读:5
作者:Ezzatollah Fathi, Raheleh Farahzadi, Behnaz Valipour, Zohreh Sanaat

Abstract

Mesenchymal stem cells (MSCs) are of special interest due their potential clinical use in cell-based therapy. Therapies engaging MSCs are showing increasing promise in the cancer treatment and anticancer drug screening applications. A multitude of growth factors and cytokines secreted from these cells are known to give such multifunctional properties, but details of their role are yet to be absolutely demonstrated. In this study, we have evaluated the influence of BMSCs on K562 cell line as chronic myeloid leukemia (CML) cells, with the use of a cytokine antibody array recognizing 34 cytokines. For this purpose, BMSCs were isolated and co-cultured with K562 cells; thereafter, cultured K562 alone and co-cultured K562 with BMSCs (10:1) were collected at day 7 and subjected to cell cycle distribution assay as well as annexin/PI analysis and Ki/caspase-3 assay for apoptosis assessment. In the following, the gene and protein expression levels of BAX and BCL-2 as pro- and anti-apoptotic agents were investigated. Furthermore, after 7 days' treatment, culture medium was collected from both control and experimental groups for cytokine antibody array. It was found that BMSCs resulted in a robust increase in the number of cells at G0/G1 phase and arrest the G0/G1 phase as well as significantly inducing late apoptosis in K562 cells. The significant presence of TIMP-1 (tissue inhibitor of metalloproteinases-1), and moderate elevated signals for CINC-1 (cytokine-induced neutrophil chemoattractant-1) were obvious in the co-cultured conditioned media, but no significant increase was found in 32 other cytokines. It is concluded that co-culture of BMSCs with K562 cells could secrete a substantial amount of TIMP-1 and CINC-1. These cytokines could be involved in the inhibition of the K562 cell proliferation via BAX and caspase-3 cascade pathways.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。