Design and Evaluation of Composite Magnetic Iron-Platinum Nanowires for Targeted Cancer Nanomedicine

用于靶向癌症纳米药物的复合磁性铁铂纳米线的设计与评估

阅读:5
作者:Abu Bakr Nana, Thashree Marimuthu, Daniel Wamwangi, Pierre P D Kondiah, Yahya E Choonara

Abstract

The purpose of the study was to synthesize and investigate the influence of geometrical structure, magnetism, and cytotoxic activity on core-shell platinum and iron-platinum (Fe/Pt) composite nanowires (NWs) for potential application in targeted chemotherapeutic approaches. The Pt-NWs and Fe/Pt composite NWs were synthesized via template electrodeposition, using anodic aluminum oxide (AAO) membranes. The Fe/Pt composite NWs (Method 1) was synthesized using two electrodeposition steps, allowing for greater control of the diameter of the NW core. The Fe/Pt composite NWs (Method 2) was synthesized by pulsed electrodeposition, using a single electrolytic bath. The properties of the synthesized NWs were assessed by high-resolution transmission electron microscopy (HRTEM), Raman spectroscopy, powder X-ray diffraction (XRD), inductively coupled plasma-optical emission spectrometry (ICP-OES), vibrating-sample magnetometry (VSM), and surface charge (zeta potential). A microscopy image analysis of the NWs revealed the presence of high-aspect-ratio NWs with nominal diameters of 40-50 nm and lengths of approximately <4 µm. The obtained powder XRD patterns confirmed the presence of a polycrystalline structure for both Pt NWs and Fe/Pt composite NWs. The potential utility of the synthesized NW nanoplatforms for anticancer activity was investigated using Tera 1 cells and Mouse 3T3 cells. Pt-NWs displayed modest cytotoxic activity against Tera 1 cells, while the Fe/Pt composite NWs (both Methods 1 and 2) demonstrated enhanced cytotoxic activity compared to the Pt-NWs on Tera 1 cells. The Fe/Pt composite NWs (Method 1) displayed ferromagnetic behavior and enhanced cytotoxic activity compared to Pt-NWs on Tera 1 cells, thus providing a sound basis for future magnetically targeted chemotherapeutic applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。