Regulation of the integrin αVβ3- actin filaments axis in early osteogenesis of human fibroblasts under cyclic tensile stress

周期性拉伸应力条件下整合素 αVβ3- 肌动蛋白丝轴在人类成纤维细胞早期成骨过程中的调节

阅读:8
作者:Yan Peng, Rongmei Qu, Yanting Feng, Xiaolan Huang, Yuchao Yang, Tingyu Fan, Bing Sun, Asmat Ullah Khan, Shutong Wu, Jingxing Dai, Jun Ouyang

Background

Integrins play a prominent role in osteogenic differentiation by transmitting both mechanical and chemical signals. Integrin expression is closely associated with tensile stress, which has a positive effect on osteogenic differentiation. We investigated the relationship between integrin αVβ3 and tensile stress.

Conclusions

Cyclic tensile stress promotes osteogenesis of human fibroblasts via integrin αVβ3-microfilament axis. Phosphorylation of FAK and nuclear YAP participates in this process.

Methods

Human fibroblasts were treated with c (RGDyk) and lentivirus transduction to inhibit function of integrin αVβ3. Y-15, cytochalasin D and verteporfin were used to inhibit phosphorylation of FAK, polymerization of microfilament and function of nuclear YAP, respectively. Fibroblasts were exposed to a cyclic tensile stress of 10% at 0.5 Hz, once a day for 2 h each application. Fibroblasts were harvested on day 4 and 7 post-treatment. The expression of ALP, RUNX2, integrin αVβ3, β-actin, talin-1, FAK, vinculin, and nuclear YAP was detected by Western blot or qRT-PCR. The expression and distribution of integrin αVβ3, vinculin, microfilament and nuclear YAP.

Results

Cyclic tensile stress was found to promote expression of ALP and RUNX2. Inhibition of integrin αVβ3 activation downregulated the rearrangement of microfilament and the expression of ALP, RUNX2 and nuclear YAP. When the polymerization of microfilament was inhibited the expression of ALP, RUNX2 and nuclear YAP were decreased. The phosphorylation of FAK induced by cyclic tensile stress reduced by the inhibition of integrin αVβ3. The expression of ALP and RUNX2 was decreased by inhibition of phosphorylation of FAK and inhibition of nuclear YAP. Conclusions: Cyclic tensile stress promotes osteogenesis of human fibroblasts via integrin αVβ3-microfilament axis. Phosphorylation of FAK and nuclear YAP participates in this process.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。